Linear Momentum Momentun: Product of mass and velocity. Formula: p=mv N: Velocity (ms') p: momentum m: mass (kg) NS (prove later) writ: kgms or P.S: Vector (magnitude and direction) Note: Momentum can be the By default, +ve > NAUDIOC CITE PRACTICE CITE Always creck the wit of mars.

Define force		
Force is defined as	. rate of ch	ange of prosters with NAUSHER
momentum.		
t	time	t
F: resultant force t: time	PHYSICS WITH AUSHER	Jote: NAUSHER
Ap: charge in momentur	n F	= mv - mu
units of Ap circle	PHYSICS WITH AUSHER	NAUSHER
$\Delta p = Fxt$		=m(v-u)
PRYSICS WITH NAUSHER N		
Note: Remember n	romention is	retor so
initial and final	monentum	of object
could have dif	ferent sig	NS IF NAUSHER
diætion of objec	t changes.	
Made with Goodnotes teaching		

Area under the curve which represents the time varying force is equal to the area under the rectangle.

Note: since force varies in an actual collision, the average net force is used in the equations to calculate change in momentum.

· To calculate change in momentum from graph, use the formula of the shape being formed by that area. e.g. rectangle = 1 x w triangle = 1 x bxh.

Made with Goodnotes

6 A rubber ball is dropped onto a table and bounces back up. The table exerts a force *F* on the ball. Which graph best shows the variation with time *t* of the force *F* for the short time that the ball is in contact with the table?

Goodnotes

A resultant force of 10 N acts on a body for a time of 2.0 s. Which graph could show the variation with time *t* of the momentum *p* of the body?

A body experiences a varying resultant force that causes its momentum to vary, as shown in the graph.

At which point does the resultant force have the largest value?

leaves the ground with momentum p_2 upwards. The ball is in contact with the ground for 0.02 During this time interval, an average resultant force of 25 N acts on the ball. What is a possible combination of values for p_1 and p_2 ?

	$p_1 / \text{kg m s}^{-1}$	$p_2/\rm kgms^{-1}$		
Α	0.15	0.65		
в	0.20	0.30		
С	0.30	0.20		
D	0.65	0.15		

th Goodnotes

Made with Goodnotes		