

L'combine rule (1)

lgt = lga" + lgb

 $f = \alpha \cdot b$

and rule 2

3. division -> subtraction

lgt = nlga + dlgb


 $h = \frac{f}{2} k^{e}$

· lgh = lgf - lgå + elgk . lgh = lgf - 2lga + elgk

(4) Anti-log

C = Lq(a)

Find a

a=10t

f = lga

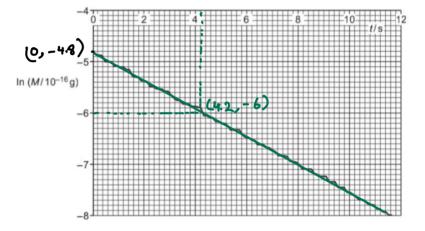
Examples teaching	K
NAU 2 = E Ga	
$2 = 2lga \rightarrow lo = a \rightarrow lo = a$ teaching	
NAUSHER One method One method	PHYSICS WITH NAUSHER
2 = lga teaching $2 = lga$ ing lo = a	
2 = 3lga	
$\begin{array}{c} \text{CHCLE}\\ \text{NAU} \underline{\lambda} \underline{\mu} \underline{\mu} \underline{\mu} \underline{\mu} \underline{\mu} \underline{\mu} \underline{\mu} \mu$	
$\frac{2}{3} = \alpha \frac{\text{teaching}}{\text{circle}}$	
4. ζ = α teaching	
* To take anti-log, log should be alo	NAUSHER
* if there's something with log, we will meaching	nove it
NAUSHER first. CITCLE PHYSICS WITH CITCLE	

• base lo log \longrightarrow log $(x) \longrightarrow$ lg(x)· base lo s) Lq(10) = 1 () Natural log(ln) -> log_(x) => ln(x) basee (Base e log) 7) ln(e)=1 (1) c = abfind lnc Inc = Ina + Inb $2 h = fa^2$ lnh = lnf + (-2lna)lnh = lnf - 2lna

Linearizing the radioactive graph -A. A = Ave At 2: Decay constant t: time To convert this exponential graph to linear graph, we need to convert our equation in the form of y=mx+c $A = A_0 e^{\lambda t}$ To convert this we will multiply In both sides. $\ln A = \ln (A_0 e^{-\lambda t})$ - Xt (Power of e will move ne (down) InA = InA, + Ine InA = InAo + (- l) lne (Ine = 1) InA = InAo - Xt

LnA .	= InAo -	A PHYSICS WITH	teaching	
Rearr	ange this	s in the fe	n= y to ma	MTC .
NAUSURA.	= ()t +!	In Ao Her		
Y	teaching	C		
NAUSHECK				
LnAo PHYSICS WITH NAUSHEI	teaching cirm=	- A PHYSICS WITH NAUSHER		
		PHYSICS WITH NAUSHER		
	teaching	PHYSICS WITH NAUSHER	teaching circle	
PHYSICS WITH NAUSHER				PHYSICS WITH NAUSHER
PHYSICS WITH NAUSHER				
X	teaching	R	teaching	R

10 Carbon-15 $\binom{15}{6}$ C) is an isotope of carbon that undergoes radioactive decay to nitrogen-15 $\binom{15}{7}$ N), which is a stable isotope of nitrogen.


Radioactive decay is both a random and a spontaneous process.

(a) State what is meant by:

(i) random cannot predict when a nucleus will decay. (ii) spontaneous. not effected by external factors.

(b) A small sample of carbon-15 decays. The mass M of carbon-15 in the sample decreases with time t.

Fig. 10.1 shows the variation with t of the value of $\ln (M/10^{-16} \text{g})$.

(i) State how Fig. 10.1 demonstrates that radioactive decay is random.

the line. Huctuations IN.

(ii) On Fig. 10.1, draw the straight line of best fit. [1]

© UCLES 2022

9702/41/O/N/22

(iii) Show that the decay constant λ of carbon-15 is given by the magnitude of the gradient of your line in (b)(ii).

$$M = M_0 e^{-\lambda t}$$

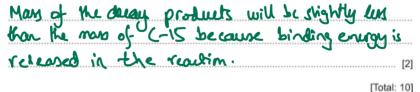
$$IM = LM_0 - \lambda t$$

$$IM = -\lambda t + LM_0$$

$$\int_{Y} \int_{X} grad = -\lambda \Rightarrow \lambda = |gradiat|$$
[1]

(iv) Use your line in (b)(ii) to determine λ. Give a unit with your answer.

$$\lambda = \frac{Y_2 - Y_1}{X_2 - X_1} = -\frac{6 - (-4.8)}{4.2 - 0} = -0.2857$$


(v) Use your answer in (b)(iv) to calculate the half-life of carbon-15.

(c) The equation for the decay of carbon-15 can be written as

$${}^{15}_{6}C \rightarrow {}^{15}_{7}N + {}^{0}_{-1}\beta + {}^{0}_{0}\overline{v}.$$

State and explain how the mass of the products of the decay must compare with the mass of the carbon-15 nucleus.

PHYSICS WITH NAUSHER				
PHYSICS WITH NAUSHER				
R	teaching	R	teaching	R