Energy Released	in Nuclear Reactions
The binding energy released in forming	y is equal to the amount of energy of the nucleus and can be calculated
The daughter nu	this produced as a result of BEPN
both fissions and	teaching
than the parent.	NAUSHER AD & CEPULT of the SHER
Here energy is between	the parent and the daughter nuclei.
	→ ³ ₂ He + energy Mole ratio
PHYSICS WITH Portice Circ	e mess/was with circle Physics with
NAUSHERH	1-00728 NAUSHER
2H teach	2.0140 teaching
NAUSHE 3He	3.01605 HIR CIPCLE NAUSHER
i) Calculate energy	gy in joules, released in this reaction.
$\Delta m = 3.010$	605u - (1.00728u + 2.0140u)
= 0.00	523 u
$\Delta E = \Delta mc^2$	$3 \times 1.66 \times (5^{-27}) (2 \times 10^8)^2$
= (0.0052) = 7.8 × 10	-137
= 7.8 × 10	ng teaching

ii) The tempe suggest w	wature in t	he core of high temper	the sun is returned is nee	1.6×10 ⁷ K.
this reaction.	J circle	NAUSHER		
since the	nuclei are	positively ch	arged, they	have
elutrostatic	repulsion.	To overcome	this republic	
		is neede		_
PHYSICS WITH NAUSHER	teaching circle	PHYSICS WITH NAUSHER		
PHYSICS WITH NAUSHER				
X	teaching	R	teaching	R

5-22/42 State what is meant by nuclear binding energy. (a) (i) Energy required to separate the nucleons in a nucleus to infinity.

(ii) On Fig. 8.1, sketch a line to show the variation with nucleon number A of the binding energy per nucleon E of a nucleus.

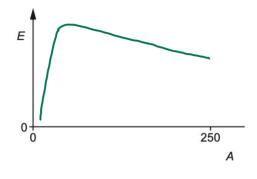
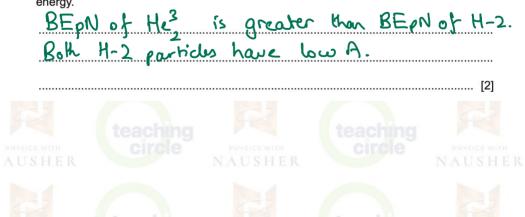


Fig. 8.1

(b) In one type of nuclear process, deuterium $\binom{2}{1}H$ undergoes the reaction


 ${}^{2}_{1}H + {}^{2}_{1}H \longrightarrow {}^{3}_{2}He + {}^{1}_{0}n.$

(i) State the name of this type of nuclear process.

nullar fusion [1]

[2]

(ii) Explain, with reference to your line in (a)(ii), why this reaction results in the release of energy.

(c) Table 8.1 shows the masses of the particles involved in the reaction in (b).

Table 8.1	
-----------	--

particle	mass/u
¹ ₀ n	1.008665
² 1H	2.014 102
³ ₂ He	3.016029

Calculate the energy released when 1.00 mol of deuterium undergoes the reaction.

 $\Delta m = 3.016029u + 1.003665u - (2 \times 2.014102)u$ = 0.003510 $\Delta E = (0.00351 \times 1.66 \times 10^{-23})(3 \times 10^{8})^{1}$ = 5.24× 10"3J Energy released when one He-3 nucleurs is formed. 2 mol H-2 from I mol of He-3 [Total: 12] NAUSHER I MOL H-2 forms 0.5 md of He-3 No. of He-3 nuclii formed = 0.5×6.02×10²³ = 3.01×10²³ Enrgy released = 3.01×1023 × 5.24×10-13 = 1.58×10"

(a) Define mass defect. Difference between man of nucleus and total man of nucleus when separated to infinity.

(b) Table 9.1 shows the mass defects of three nuclei.

Table 9.1

nucleus	mass defect/u
2 ₁ H	0.002388
³ 1Н	0.009 105
⁴ ₂ He	0.030377

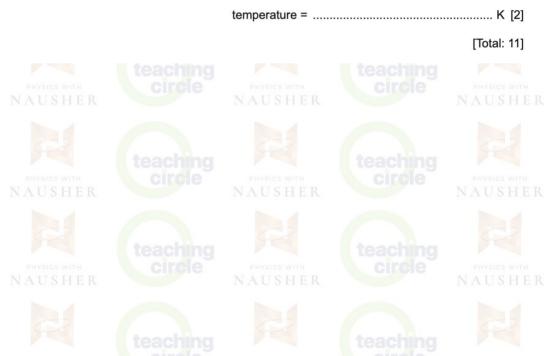
The nuclear fusion process in a particular star is described by

$$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + X$$

where X is a particle that has no mass defect.

(i) State the name of particle X.

neutron


(ii) Show that the energy released when one nucleus of ${}_{2}^{4}$ He is formed in this fusion reaction is 2.8×10^{-12} J.

 $\Delta m = 0.0303774 u - (0.002388u+0.009105u)$ = 0.018884u $\Delta E = \Delta m c^{2}$ $= (0.018894 u + 1.66 x 10^{-27}) (3x 10^{8})^{2}$ $= (0.018894 u + 1.66 x 10^{-27}) (3x 10^{8})^{2}$ $= 2.82 x 10^{-12} J SHER$ $= 2.82 x 10^{-12} J SHER$

(c) The star in (b) has a radius of 2.3×10^9 m and a luminosity of 1.4×10^{28} W. All the energy released from the formation of ${}_2^4$ He is radiated away from the star. All the energy that is radiated from the star has been released in the formation of ${}_2^4$ He.

Determine:

- (i) the mass of ⁴₂He produced per unit time by the fusion process Incluse of He -4 releases = 2.82×10^{-12} J Total energy released per second = 1.4×10^{29} J/s Total # of nuclü formed = $\frac{1.4 \times 10^{28}}{2.82 \times 10^{-12}} = 4.96 \times 10^{39}$ per second 2.82×10^{-12} = 4.96×10^{39} Mass of Incluss = $4u = 4 \times 1.66 \times 10^{-27}$ kg = 6.64×10^{-27} kg Total mass of He-4 produced = $6.64 \times 10^{-27} \times 4.96 \times 10^{59}$ mass per unit time = 3.3×10^{13} kgs⁻¹ [3]
- (ii) the surface temperature of the star.

(b) The nuclear fission of uranium-235 can be described by

 $_{0}^{1}n + _{92}^{235}U \longrightarrow _{56}^{144}Ba + _{36}^{89}Kr + 3_{0}^{1}n.$

Table 6.1 shows the masses of the particles involved in this reaction.

Table	6.1
10010	•

particle	mass/u
¹ ₀ n	1.008665
⁸⁹ ₃₆ Kr	88.917636
¹⁴⁴ ₅₆ Ba	143.922953
²³⁵ ₉₂ U	235.043930

Determine the energy released by the fission of 15.0 kg of uranium-235.

$M_{p} = 143.922953 + 88.917636 + 3(1.008665)$
225,3665844
$m_{-} = 225 \text{ substants} + 1.008665 = 236.6525454$
$\Lambda m = 0.186011 u = 3.0877826 \times 10^{-10}$
$\Delta F = \Delta mc^2 = 2.78 \times 10^{-11}$
energy = J [4]
particle of U-235 produces 2.78×10"5
235.0439300 produces 2.78×10-15
3.901×10 ⁻²⁵ kg -2.78×10"J
15 Rg - 1.07x1015 Jer