Nuclear Physics.	
Mass Defect and Nuclear Binding Energy	teaching
NAUSHER $\lambda = \underline{h}$ Debroglie	's wavelingth NAUSHER
$f \lambda = \frac{f w}{1 + 1}$. Multiply	both sides with f.
NAUSHER $CIPIE NAUSHER V = f \lambda$	
C = E P P P P P P P P	light => C= f> energy of photon
$E = mc^2$: Equation	n shows evergy-mass equivalence
binding energy mandefect speed of ((J) (kg) (ms ⁻¹)	Mars can be converted into energy and vice versa.
Mars Defect that total man of	nudeurs is less than its
care bituents (postons and reactions).	
This difference is called man defect	
. The difference between the mass of of the individual masses of its protons	a nucleus and the sun and reutrons, separated to infinity.
A A: Mars Number	$11 - 166 \times 10^{-27} \text{ kg}$
Z-Proton Number	DATA BODKLET
A-Z: No. of neutrons.	teaching
mp: mans of a proton -> Given u mp: mans of a number -> Given	usually interms of u
Motal: mans of a nucleus	
$\Delta m = Zm_{p} + (A-Z)m_{n} - m_{t}$	NAUSHER

Due to energy mans equivalence, the energy released is explained by the decrease in mass. Since nuclei are made up of protons and neutrons, there are forces of repulsion between prostons, here it takes energy to bind the nucleus (or hold the nucleus together). Binding Energy nucleus into its The energy required to break a Constituent protons and neutrons. Energy and Mars are proportional, hence total energy of a nucleus is less than the sum of the energies of its constituent nucleons. Hence the formation of a nucleus from a system of isolated protons and neutrons is an exothermic reaction. The energy can be calculated using $E = mc^2$ Q. Find the binding energy released in the formation of a He-4 nucleus. mans of proton = 1.00734 He 2 mars of neutron = 1.00874 mass of the - nucleus = 4.0015u

Step 1 Find Am			
PHYSICS WITH NAUSHER			
Step 2 _{FR} circle			
Find DE Reaching Circle NAUSHER			
PHYSICS WITH Note:		teaching circle	PHYSICS WITH NAUSHER
Show that lu is	equivalent	teaching circle	MeV . PHYSICS WITH NAUSHER
PHYSICS WITH NAUSHER			

Binding Energy Per Nucleon Binding energy is not a measure of stability. Binding energy per nucleon is the true measure of stability. Diadi a Energy Per Nucleon Binding Energy of nucleon

Binding Energy Per Nuclem - Binding Energy of-nucleus (BEPN) Nucleur Number

· A higher binding energy per nucleon indicates higher stability (greater energy is needed to break the nucleus)

Key features: At low mass numbers, nuclei tend to have low BEPN, hence they are unstable. This means, they will most likely undergo fusion.

At high nuclear numbers, the general BEpN is high and it gradually dureases with increasing mans number. . This means, the heaviest elements are most instable and with undurgo fission.

·Graph doesn	wt start	from Zk	ro. Peak BEp	N is	
for Iron - 5	6.000				
Note: Idu	tify the	problemi	n the graph	NAUSHER	
₹		de			
NABEN DER	earing	PHYSICS WITH	circle		
	eaching				
PHYSICS WITH					
	eaching		250		
BEON P					
PHYSICS WITH NAUSHER					
PHYSICS WITH NAUSHER					
	eaching	R	250 teaching		
Note: When a high BEPN nucleus is formed,					
Its protons and nubrons will be more tightly					
bound, car	wing a	releas	e of energy	, making	
the nucleus more stable.					

9 (a) State what is meant by the binding energy of a nucleus.

(b) Table 9.1 shows the masses of two sub-atomic particles and a polonium-212 $\binom{212}{84}$ Po) nucleus.

Table 9.1

	mass/u
proton	1.007 276
neutron	1.008 665
polonium-212 nucleus	211.942749

For the polonium-212 nucleus, determine:

(i) the mass defect ∆m, in kg

Δ*m* = kg [3]

(ii) the binding energy

binding energy = J [2]

(iii) the binding energy per nucleon.

binding energy per nucleon = J [1]

(c) (i) On Fig. 9.1, sketch the variation with nucleon number A of binding energy per nucleon for values of A from 1 to 250.

Fig. 9.1

[2]

(ii) On your line in Fig. 9.1, draw an X to show the approximate position of polonium-212. [1]

(iii) Polonium-212 is radioactive and undergoes alpha-decay.

Suggest and explain, with reference to Fig. 9.1, why the alpha-decay of polonium-212 results in a release of energy.

[2]